http://www.rssboard.org/rss-specification 720 XTF Search Results (expand=subject;f1-subject=Observatory (space-based);f2-associated-Lesson=Gamma Ray Tools) http://ecuip-xtf.lib.uchicago.edu/xtf/search?expand%3Dsubject;f1-subject%3DObservatory%20(space-based);f2-associated-Lesson%3DGamma%20Ray%20Tools Results for your query: expand=subject;f1-subject=Observatory (space-based);f2-associated-Lesson=Gamma Ray Tools Thu, 01 Jan 1970 12:00:00 GMT Swift Instrumentation. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/64325main_swift-si/64325main_swift-si.dc.xml Swift's three scientific instruments work together to learn as much as possible about gamma-ray bursts. The Burst Alert telescope (BAT) is the first instrument to detect gamma-rays in the quarter of the sky at which it is pointed. Then the satellite is reoriented using data from BAT so that XRT and UVOT, which have a much smaller field of view, can be pointed at the GRB. With this information, ground-based telescopes can be pointed directly at the source to gather more data about the GRB. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/64325main_swift-si/64325main_swift-si.dc.xml Thu, 01 Jan 1970 12:00:00 GMT GRB Coordinates Network. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/GCN/GCN.dc.xml Schematic of the GRB Coordinates Network (GCN), a system that distributes information about the location of a gamma-ray burst (GRB). The spacecraft sends the GRB location information down to a ground station, which in turn relays it to the GCN at the NASA Goddard Space Flight Center. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/GCN/GCN.dc.xml Thu, 01 Jan 1970 12:00:00 GMT NuSTAR instrumentation. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/nustar1/nustar1.dc.xml The artist’s conception illustrates the orientation of the detectors and optics on the satellite. The solar panel on the left provides power to the telescope. The yellow module on the far right contains the new technology optics which consists of two mirrors. These mirrors focus the hard X-rays and soft gamma rays onto the detectors at the other end of the deployable mast. The optics and the detectors must be separated by 10 meters (30 feet). The detectors and optics are launched close together because they just fit in the existing rockets used to launch satellites into space; the mast is extended after launch. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/nustar1/nustar1.dc.xml Thu, 01 Jan 1970 12:00:00 GMT The Voyager 1 spacecraft and instruments. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/voyager1/voyager1.dc.xml Voyager 1 and 2 were launched 16 days apart in 1977 to study Jupiter and Saturn. In September 2013, NASA reported that Voyager 1 had entered interstellar space, placing it more than 11 billion miles from the Sun and making it the most distant human-made object. As of 2013, Voyager 2 is in the heliosheath, the outermost layer of the immense magnetic bubble, called the heliosphere, that contains our solar system. Both Voyager 1 and 2 are still sending scientific information about their surroundings through the Deep Space Network (DSN). http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/voyager1/voyager1.dc.xml Thu, 01 Jan 1970 12:00:00 GMT Swift Gamma-Ray Burst Explorer. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/68168main_swift-burst_m/6168main_swift-burst_m.dc.xml An artist's concept of the Swift Gamma-Ray Burst Explorer catching a gamma-ray burst. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/68168main_swift-burst_m/6168main_swift-burst_m.dc.xml Thu, 01 Jan 1970 12:00:00 GMT